scusumkbn2
Calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
Usage
var scusumkbn2 = require( '@stdlib/blas/ext/base/scusumkbn2' );
scusumkbn2( N, sum, x, strideX, y, strideY )
Computes the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );
scusumkbn2( x.length, 0.0, x, 1, y, 1 );
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]
x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
y = new Float32Array( x.length );
scusumkbn2( x.length, 10.0, x, 1, y, 1 );
// y => <Float32Array>[ 11.0, 9.0, 11.0 ]
The function has the following parameters:
- N: number of indexed elements.
- sum: initial sum.
- x: input
Float32Array
. - strideX: index increment for
x
. - y: output
Float32Array
. - strideY: index increment for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative sum of every other element in x
,
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float32Array( x.length );
var v = scusumkbn2( 4, 0.0, x, 2, y, 1 );
// y => <Float32Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
// Initial arrays...
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( x0.length );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
scusumkbn2( 4, 0.0, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]
scusumkbn2.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )
Computes the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm and alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( 3 );
scusumkbn2.ndarray( 3, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer
, offset parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in x
starting from the second value and to store in the last N
elements of y
starting from the last element
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float32Array( x.length );
scusumkbn2.ndarray( 4, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]
Notes
- If
N <= 0
, both functions returny
unchanged.
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array/filled-by' );
var scusumkbn2 = require( '@stdlib/blas/ext/base/scusumkbn2' );
var x = filledarrayBy( 10, 'float32', discreteUniform( 0, 100 ) );
console.log( x );
var y = filledarrayBy( x.length, 'float32', discreteUniform( 0, 10 ) );
console.log( y );
scusumkbn2( x.length, 0.0, x, 1, y, -1 );
console.log( y );
References
- Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." Computing 76 (3): 279–93. doi:10.1007/s00607-005-0139-x.