dnansum

Calculate the sum of double-precision floating-point strided array elements, ignoring NaN values.

Usage

var dnansum = require( '@stdlib/blas/ext/base/dnansum' );

dnansum( N, x, strideX )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = dnansum( x.length, x, 1 );
// returns 1.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: stride length for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element in the strided array,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );

var v = dnansum( 4, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dnansum( 4, x1, 2 );
// returns 5.0

dnansum.ndarray( N, x, strideX, offsetX )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values and using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = dnansum.ndarray( x.length, x, 1, 0 );
// returns 1.0

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dnansum.ndarray( 4, x, 2, 1 );
// returns 5.0

Notes

  • If N <= 0, both functions return 0.0.

Examples

var bernoulli = require( '@stdlib/random/base/bernoulli' );
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Float64Array = require( '@stdlib/array/float64' );
var dnansum = require( '@stdlib/blas/ext/base/dnansum' );

function clbk() {
    if ( bernoulli( 0.7 ) > 0 ) {
        return discreteUniform( 0, 100 );
    }
    return NaN;
}

var x = filledarrayBy( 10, 'float64', clbk );
console.log( x );

var v = dnansum( x.length, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/blas/ext/base/dnansum.h"

stdlib_strided_dnansum( N, *X, strideX )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values.

const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnansum( 4, x, 1 );
// returns 7.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
double stdlib_strided_dnansum( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

stdlib_strided_dnansum_ndarray( N, *X, strideX, offsetX )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values and using alternative indexing semantics.

const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnansum_ndarray( 4, x, 1, 0 );
// returns 7.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dnansum_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/blas/ext/base/dnansum.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 0.0/0.0, 0.0/0.0 };

    // Specify the number of elements:
    const int N = 5;

    // Specify the stride length:
    const int strideX = 2;

    // Compute the sum:
    double v = stdlib_strided_dnansum( N, x, strideX );

    // Print the result:
    printf( "sum: %lf\n", v );
}
Did you find this page helpful?