dnanasumors

Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

The L1 norm is defined as

double-vertical-bar bold x double-vertical-bar Subscript 1 Baseline equals sigma-summation Underscript i equals 0 Overscript n minus 1 Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue

Usage

var dnanasumors = require( '@stdlib/blas/ext/base/dnanasumors' );

dnanasumors( N, x, strideX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasumors( N, x, 1 );
// returns 5.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of absolute values (L1 norm) for every other element in x,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );

var v = dnanasumors( 4, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dnanasumors( 4, x1, 2 );
// returns 9.0

dnanasumors.ndarray( N, x, strideX, offsetX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasumors.ndarray( N, x, 1, 0 );
// returns 5.0

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values (L1 norm) for every other value in x starting from the second value

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dnanasumors.ndarray( 4, x, 2, 1 );
// returns 9.0

Notes

  • If N <= 0, both functions return 0.0.
  • Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var dnanasumors = require( '@stdlib/blas/ext/base/dnanasumors' );

function rand() {
    if ( bernoulli( 0.5 ) < 0.2 ) {
        return NaN;
    }
    return discreteUniform( 0, 100 );
}

var x = filledarrayBy( 10, 'float64', rand );
console.log( x );

var v = dnanasumors( x.length, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/blas/ext/base/dnanasumors.h"

stdlib_strided_dnanasumors( N, *X, strideX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnanasumors( 4, x, 1 );
// returns 7.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT index increment for X.
double stdlib_strided_dnanasumors( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

stdlib_strided_dnanasumors_ndarray( N, *X, strideX, offsetX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.

const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnanasumors_ndarray( 4, x, 1, 0 );
// returns 7.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT index increment for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dnanasumors_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/blas/ext/base/dnanasumors.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, 2.0, -3.0, -4.0, 5.0, -6.0, -7.0, 8.0, 0.0/0.0, 0.0/0.0 };

    // Specify the number of elements:
    const int N = 5;

    // Specify the stride length:
    const int strideX = 2;

    // Compute the sum:
    double v = stdlib_strided_dnanasumors( N, x, strideX );

    // Print the result:
    printf( "sumabs: %lf\n", v );
}
Did you find this page helpful?