cfill
Fill a single-precision complex floating-point strided array with a specified scalar constant.
Usage
var cfill = require( '@stdlib/blas/ext/base/cfill' );
cfill( N, alpha, x, strideX )
Fills a single-precision complex floating-point strided array x
with a specified scalar constant alpha
.
var Float32Array = require( '@stdlib/array/float32' );
var Complex64Array = require( '@stdlib/array/complex64' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var arr = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var x = new Complex64Array( arr );
var alpha = new Complex64( 10.0, 10.0 );
cfill( x.length, alpha, x, 1 );
var y = x.get( 0 );
// returns <Complex64>
var re = realf( y );
// returns 10.0
var im = imagf( y );
// returns 10.0
The function has the following parameters:
- N: number of indexed elements.
- alpha: scalar constant.
- x: input
Complex64Array
. - strideX: stride length.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to fill every other element:
var Float32Array = require( '@stdlib/array/float32' );
var Complex64Array = require( '@stdlib/array/complex64' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var arr = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var x = new Complex64Array( arr );
var alpha = new Complex64( 10.0, 10.0 );
cfill( 2, alpha, x, 2 );
var y = x.get( 0 );
// returns <Complex64>
var re = realf( y );
// returns 10.0
var im = imagf( y );
// returns 10.0
y = x.get( 1 );
// returns <Complex64>
re = realf( y );
// returns 3.0
im = imagf( y );
// returns 4.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
var Complex64Array = require( '@stdlib/array/complex64' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
// Create the underlying floating-point array:
var arr = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
// Initial array:
var x0 = new Complex64Array( arr );
// Create an offset view:
var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Define a scalar constant:
var alpha = new Complex64( 10.0, 10.0 );
// Fill every other element:
cfill( 2, alpha, x1, 2 );
var y = x0.get( 0 );
// returns <Complex64>
var re = realf( y );
// returns 1.0
var im = imagf( y );
// returns 2.0
y = x0.get( 1 );
// returns <Complex64>
re = realf( y );
// returns 10.0
im = imagf( y );
// returns 10.0
cfill.ndarray( N, alpha, x, strideX, offsetX )
Fills a single-precision complex floating-point strided array x
with a specified scalar constant alpha
using alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var Complex64Array = require( '@stdlib/array/complex64' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var arr = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var x = new Complex64Array( arr );
var alpha = new Complex64( 10.0, 10.0 );
cfill.ndarray( x.length, alpha, x, 1, 0 );
var y = x.get( 0 );
// returns <Complex64>
var re = realf( y );
// returns 10.0
var im = imagf( y );
// returns 10.0
The function has the following additional parameters:
- offsetX: starting index.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access only the last two elements of the strided array:
var Float32Array = require( '@stdlib/array/float32' );
var Complex64Array = require( '@stdlib/array/complex64' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var arr = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Complex64Array( arr );
var alpha = new Complex64( 10.0, 10.0 );
cfill.ndarray( 2, alpha, x, 1, x.length-2 );
var y = x.get( 0 );
// returns <Complex64>
var re = realf( y );
// returns 1.0
var im = imagf( y );
// returns 2.0
y = x.get( 1 );
// returns <Complex64>
re = realf( y );
// returns 10.0
im = imagf( y );
// returns 10.0
y = x.get( 2 );
// returns <Complex64>
re = realf( y );
// returns 10.0
im = imagf( y );
// returns 10.0
Notes
- If
N <= 0
, both functions return the strided array unchanged.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Complex64Array = require( '@stdlib/array/complex64' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var cfill = require( '@stdlib/blas/ext/base/cfill' );
var xbuf = discreteUniform( 20, -100, 100, {
'dtype': 'float32'
});
var x = new Complex64Array( xbuf.buffer );
var alpha = new Complex64( 10.0, 10.0 );
cfill( x.length, alpha, x, 1 );
console.log( x.get( 0 ).toString() );
Usage
#include "stdlib/blas/ext/base/cfill.h"
stdlib_strided_cfill( N, alpha, *X, strideX )
Fills a single-precision complex floating-point strided array X
with a specified scalar constant alpha
.
#include "stdlib/complex/float32/ctor.h"
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f };
const stdlib_complex64_t alpha = stdlib_complex64( 2.0f, 2.0f );
stdlib_strided_cfill( 2, alpha, (stdlib_complex64_t *)x, 1 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - alpha:
[in] stdlib_complex64_t
scalar constant. - X:
[out] stdlib_complex64_t*
input array. - strideX:
[in] CBLAS_INT
stride length forX
.
void stdlib_strided_cfill( const CBLAS_INT N, const stdlib_complex64_t alpha, stdlib_complex64_t *X, const CBLAS_INT strideX );
stdlib_strided_cfill_ndarray( N, alpha, *X, strideX, offsetX )
Fills a single-precision complex floating-point strided array X
with a specified scalar constant alpha
using alternative indexing semantics.
#include "stdlib/complex/float32/ctor.h"
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f };
const stdlib_complex64_t alpha = stdlib_complex64( 2.0f, 2.0f );
stdlib_strided_cfill_ndarray( 4, alpha, (stdlib_complex64_t *x), 1, 0 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - alpha:
[in] stdlib_complex64_t
scalar constant. - X:
[out] stdlib_complex64_t*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
.
void stdlib_strided_cfill_ndarray( const CBLAS_INT N, const stdlib_complex64_t alpha, stdlib_complex64_t *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
Examples
#include "stdlib/blas/ext/base/cfill.h"
#include "stdlib/complex/float32/ctor.h"
#include <stdio.h>
int main( void ) {
// Create a strided array of interleaved real and imaginary components:
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
// Create a complex scalar:
const stdlib_complex64_t alpha = stdlib_complex64( 2.0f, 2.0f );
// Specify the number of indexed elements:
const int N = 4;
// Specify a stride:
const int strideX = 1;
// Fill the array:
stdlib_strided_cfill( N, alpha, (stdlib_complex64_t *)x, strideX );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "x[ %i ] = %f + %fj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
}
}