scasum
Compute the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector.
Usage
var scasum = require( '@stdlib/blas/base/scasum' );
scasum( N, cx, strideX )
Computes the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector.
var Complex64Array = require( '@stdlib/array/complex64' );
var cx = new Complex64Array( [ 0.3, 0.1, 0.5, 0.0, 0.0, 0.5, 0.0, 0.2 ] );
var out = scasum( 4, cx, 1 );
// returns ~1.6
The function has the following parameters:
- N: number of indexed elements.
- cx: input
Complex64Array
. - strideX: index increment for
cx
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to traverse every other value,
var Complex64Array = require( '@stdlib/array/complex64' );
var cx = new Complex64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var out = scasum( 2, cx, 2 );
// returns 7.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex64Array = require( '@stdlib/array/complex64' );
// Initial array:
var cx0 = new Complex64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
// Create an offset view:
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Compute the L2-out:
var out = scasum( 2, cx1, 1 );
// returns 18.0
scasum.ndarray( N, cx, strideX, offset )
Computes the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array/complex64' );
var cx = new Complex64Array( [ 0.3, 0.1, 0.5, 0.0, 0.0, 0.5, 0.0, 0.2 ] );
var out = scasum.ndarray( 4, cx, 1, 0 );
// returns ~1.6
The function has the following additional parameters:
- offsetX: starting index.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to start from the second index,
var Complex64Array = require( '@stdlib/array/complex64' );
var cx = new Complex64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
var out = scasum.ndarray( 2, cx, 1, 1 );
// returns 18.0
Notes
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var scasum = require( '@stdlib/blas/base/scasum' );
function rand() {
return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
var cx = filledarrayBy( 10, 'complex64', rand );
console.log( cx.toString() );
// Compute the sum of the absolute values of real and imaginary components:
var out = scasum( cx.length, cx, 1 );
console.log( out );
C APIs
Usage
#include "stdlib/blas/base/scasum.h"
c_scasum( N, *CX, strideX )
Computes the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector.
const float cx[] = { 0.3f, 0.1f, 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.2f };
float out = c_scasum( 4, (void *)cx, 1 );
// returns 1.6f
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - CX:
[in] void*
input array. - strideX:
[in] CBLAS_INT
index increment forCX
.
float c_scasum( const CBLAS_INT N, const void *CX, const CBLAS_INT strideX );
c_scasum_ndarray( N, *CX, strideX, offsetX )
Computes the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector using alternative indexing semantics.
const float cx[] = { 0.3f, 0.1f, 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.2f };
float out = c_scasum_ndarray( 4, (void *)cx, 1, 0 );
// returns 1.6f
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - CX:
[in] void*
input array. - strideX:
[in] CBLAS_INT
index increment forCX
. - offsetX:
[in] CBLAS_INT
starting index forCX
.
float c_scasum_ndarray( const CBLAS_INT N, const void *CX, const CBLAS_INT strideX, const CBLAS_INT offsetX );
Examples
#include "stdlib/blas/base/scasum.h"
#include <stdio.h>
int main( void ) {
// Create a strided array of interleaved real and imaginary components:
const float cx[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
// Specify the number of elements:
const int N = 4;
// Specify stride length:
const int strideX = 1;
// Compute the sum of the absolute values of real and imaginary components:
float out = c_scasum( N, (void *)cx, strideX );
// Print the result:
printf( "out: %f\n", out );
// Compute the sum of the absolute values of real and imaginary components using alternative indexing semantics:
out = c_scasum_ndarray( N, (void *)cx, -strideX, N-1 );
// Print the result:
printf( "out: %f\n", out );
}