saxpy

Multiply a vector x by a constant alpha and add the result to y.

Usage

var saxpy = require( '@stdlib/blas/base/saxpy' );

saxpy( N, alpha, x, strideX, y, strideY )

Multiplies a vector x by a constant alpha and adds the result to y.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;

saxpy( x.length, alpha, x, 1, y, 1 );
// y => <Float32Array>[ 6.0, 11.0, 16.0, 21.0, 26.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • alpha: numeric constant.
  • x: input Float32Array.
  • strideX: index increment for x.
  • y: input Float32Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to multiply every other value in x by alpha and add the result to the first N elements of y in reverse order,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );

var alpha = 5.0;
var N = floor( x.length / 2 );

saxpy( N, alpha, x, 2, y, -1 );
// y => <Float32Array>[ 26.0, 16.0, 6.0, 1.0, 1.0, 1.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

// Initial arrays...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

var N = floor( x0.length / 2 );

saxpy( N, 5.0, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 7.0, 8.0, 9.0, 40.0, 31.0, 22.0 ]

saxpy.ndarray( N, alpha, x, strideX, offsetX, y, strideY, offsetY )

Multiplies a vector x by a constant alpha and adds the result to y using alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;

saxpy.ndarray( x.length, alpha, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 6.0, 11.0, 16.0, 21.0, 26.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to multiply every other value in x by a constant alpha starting from the second value and add to the last N elements in y where x[i] -> y[n], x[i+2] -> y[n-1],...,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

var alpha = 5.0;
var N = floor( x.length / 2 );

saxpy.ndarray( N, alpha, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 7.0, 8.0, 9.0, 40.0, 31.0, 22.0 ]

Notes

  • If N <= 0 or alpha == 0, both functions return y unchanged.
  • saxpy() corresponds to the BLAS level 1 function saxpy.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var saxpy = require( '@stdlib/blas/base/saxpy' );

var x;
var y;
var i;

x = new Float32Array( 10 );
y = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( randu()*100.0 );
    y[ i ] = round( randu()*10.0 );
}
console.log( x );
console.log( y );

saxpy.ndarray( x.length, 5.0, x, 1, 0, y, -1, y.length-1 );
console.log( y );
Did you find this page helpful?