dznrm2
Compute the L2-norm of a complex double-precision floating-point vector.
Usage
var dznrm2 = require( '@stdlib/blas/base/dznrm2' );
dznrm2( N, zx, strideX )
Computes the L2-norm of a complex double-precision floating-point vector.
var Complex128Array = require( '@stdlib/array/complex128' );
var zx = new Complex128Array( [ 0.3, 0.1, 0.5, 0.0, 0.0, 0.5, 0.0, 0.2 ] );
var norm = dznrm2( 4, zx, 1 );
// returns ~0.8
The function has the following parameters:
- N: number of indexed elements.
- zx: input
Complex128Array
. - strideX: index increment for
zx
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to traverse every other value,
var Complex128Array = require( '@stdlib/array/complex128' );
var zx = new Complex128Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var norm = dznrm2( 2, zx, 2 );
// returns ~4.6
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex128Array = require( '@stdlib/array/complex128' );
// Initial array:
var zx0 = new Complex128Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
// Create an offset view:
var zx1 = new Complex128Array( zx0.buffer, zx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Compute the L2-norm:
var norm = dznrm2( 2, zx1, 1 );
// returns ~9.3
dznrm2.ndarray( N, zx, strideX, offset )
Computes the L2-norm of a complex double-precision floating-point vector using alternative indexing semantics.
var Complex128Array = require( '@stdlib/array/complex128' );
var zx = new Complex128Array( [ 0.3, 0.1, 0.5, 0.0, 0.0, 0.5, 0.0, 0.2 ] );
var norm = dznrm2.ndarray( 4, zx, 1, 0 );
// returns ~0.8
The function has the following additional parameters:
- offsetX: starting index.
While typed array
views mandate a view offset based on the underlying buffer, the offset
parameter supports indexing semantics based on a starting index. For example, to start from the second index,
var Complex128Array = require( '@stdlib/array/complex128' );
var zx = new Complex128Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
var norm = dznrm2.ndarray( 2, zx, 1, 1 );
// returns ~9.3
Notes
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var dznrm2 = require( '@stdlib/blas/base/dznrm2' );
function rand() {
return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
var zx = filledarrayBy( 10, 'complex128', rand );
console.log( zx.toString() );
// Computes the L2-norm:
var norm = dznrm2( zx.length, zx, 1 );
console.log( norm );
C APIs
Usage
#include "stdlib/blas/base/dznrm2.h"
c_dznrm2( N, *ZX, strideX )
Computes the L2-norm of a complex double-precision floating-point vector.
const double zx[] = { 0.3, 0.1, 0.5, 0.0, 0.0, 0.5, 0.0, 0.2 };
double norm = c_dznrm2( 4, (void *)zx, 1 );
// returns 0.8
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - ZX:
[in] void*
input array. - strideX:
[in] CBLAS_INT
index increment forZX
.
double c_dznrm2( const CBLAS_INT N, const void *ZX, const CBLAS_INT strideX );
c_dznrm2_ndarray( N, *ZX, strideX, offsetX )
Computes the L2-norm of a complex double-precision floating-point vector using alternative indexing semantics.
const double zx[] = { 0.3, 0.1, 0.5, 0.0, 0.0, 0.5, 0.0, 0.2 };
double norm = c_dznrm2_ndarray( 4, (void *)zx, 1, 0 );
// returns 0.8
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - ZX:
[in] void*
input array. - strideX:
[in] CBLAS_INT
index increment forZX
. - offsetX:
[in] CBLAS_INT
starting index forZX
.
double c_dznrm2_ndarray( const CBLAS_INT N, const void *ZX, const CBLAS_INT strideX, const CBLAS_INT offsetX );
Examples
#include "stdlib/blas/base/dznrm2.h"
#include <stdio.h>
int main( void ) {
// Create a strided array of interleaved real and imaginary components:
const double zx[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
// Specify the number of elements:
const int N = 4;
// Specify stride length:
const int strideX = 1;
// Compute the L2-norm:
double norm = c_dznrm2( N, (void *)zx, strideX );
// Print the result:
printf( "L2-norm: %lf\n", norm );
// Compute the L2-norm using alternative indexing semantics:
norm = c_dznrm2_ndarray( N, (void *)zx, -strideX, N-1 );
// Print the result:
printf( "L2-norm: %lf\n", norm );
}