dsymv
Perform the matrix-vector operation
y = α*A*x + β*y
whereα
andβ
are scalars,x
andy
areN
element vectors, andA
is anN
byN
symmetric matrix.
Usage
var dsymv = require( '@stdlib/blas/base/dsymv' );
dsymv( order, uplo, N, α, A, LDA, x, sx, β, y, sy )
Performs the matrix-vector operation y = α*A*x + β*y
where α
and β
are scalars, x
and y
are N
element vectors, and A
is an N
by N
symmetric matrix.
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0 ] );
var x = new Float64Array( [ 1.0, 1.0, 1.0 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0 ] );
dsymv( 'row-major', 'lower', 3, 1.0, A, 3, x, 1, 0.0, y, 1 );
// y => <Float64Array>[ 1.0, 2.0, 3.0 ]
The function has the following parameters:
- order: storage layout.
- uplo: specifies whether the upper or lower triangular part of the symmetric matrix
A
should be referenced. - N: number of elements along each dimension of
A
. - α: scalar constant.
- A: input matrix stored in linear memory as a
Float64Array
. - lda: stride of the first dimension of
A
(a.k.a., leading dimension of the matrixA
). - x: input
Float64Array
. - sx: index increment for
x
. - β: scalar constant.
- y: output
Float64Array
. - sy: index increment for
y
.
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of x
in reverse order,
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0 ] );
dsymv( 'row-major', 'upper', 3, 2.0, A, 3, x, -1, 1.0, y, 1 );
// y => <Float64Array>[ 7.0, 10.0, 9.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 1.0, 1.0, 1.0 ] );
var y0 = new Float64Array( [ 1.0, 1.0, 1.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dsymv( 'row-major', 'upper', 3, 1.0, A, 3, x1, -1, 1.0, y1, -1 );
// y0 => <Float64Array>[ 1.0, 4.0, 3.0, 2.0 ]
dsymv.ndarray( order, uplo, N, α, A, LDA, x, sx, ox, β, y, sy, oy )
Performs the matrix-vector operation y = α*A*x + β*y
using alternative indexing semantics and where α
and β
are scalars, x
and y
are N
element vectors, and A
is an N
by N
symmetric matrix.
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0 ] );
dsymv.ndarray( 'row-major', 'upper', 3, 2.0, A, 3, x, -1, 2, 1.0, y, 1, 0 );
// y => <Float64Array>[ 7.0, 10.0, 9.0 ]
The function has the following additional parameters:
- ox: starting index for
x
. - oy: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0 ] );
var x = new Float64Array( [ 1.0, 1.0, 1.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0 ] );
dsymv.ndarray( 'row-major', 'lower', 3, 1.0, A, 3, x, -1, 2, 1.0, y, -1, 2 );
// y => <Float64Array>[ 4.0, 3.0, 2.0 ]
Notes
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var ones = require( '@stdlib/array/ones' );
var dsymv = require( '@stdlib/blas/base/dsymv' );
var opts = {
'dtype': 'float64'
};
var N = 3;
var A = ones( N*N, opts.dtype );
var x = discreteUniform( N, 0, 255, opts );
var y = discreteUniform( N, 0, 255, opts );
dsymv.ndarray( 'row-major', 'upper', N, 1.0, A, N, x, 1, 0, 1.0, y, 1, 0 );
console.log( y );
C APIs
Usage
TODO
TODO
TODO.
TODO
TODO
TODO
Examples
TODO