dspr
Perform the symmetric rank 1 operation
A = α*x*x^T + A.
Usage
var dspr = require( '@stdlib/blas/base/dspr' );
dspr( order, uplo, N, α, x, sx, AP )
Performs the symmetric rank 1 operation A = α*x*x^T + A where α is a scalar, x is an N element vector, and A is an N by N symmetric matrix supplied in packed form.
var Float64Array = require( '@stdlib/array/float64' );
var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
dspr( 'row-major', 'upper', 3, 1.0, x, 1, AP );
// AP => <Float64Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]
The function has the following parameters:
- order: storage layout.
 - uplo: specifies whether the upper or lower triangular part of the symmetric matrix 
Ais supplied. - N: number of elements along each dimension of 
A. - α: scalar constant.
 - x: input 
Float64Array. - sx: index increment for 
x. - AP: packed form of a symmetric matrix 
Astored as aFloat64Array. 
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of x in reverse order,
var Float64Array = require( '@stdlib/array/float64' );
var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 3.0, 2.0, 1.0 ] );
dspr( 'row-major', 'upper', 3, 1.0, x, -1, AP );
// AP => <Float64Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array/float64' );
// Initial arrays...
var x0 = new Float64Array( [ 0.0, 3.0, 2.0, 1.0 ] );
var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dspr( 'row-major', 'upper', 3, 1.0, x1, -1, AP );
// AP => <Float64Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]
dspr.ndarray( uplo, N, α, x, sx, ox, AP, sap, oap )
Performs the symmetric rank 1 operation A = α*x*x^T + A, using alternative indexing semantics and where α is a scalar, x is an N element vector, and A is an N by N symmetric matrix supplied in packed form.
var Float64Array = require( '@stdlib/array/float64' );
var AP = new Float64Array( [ 1.0, 1.0, 2.0, 1.0, 2.0, 3.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
dspr.ndarray( 'row-major', 'lower', 3, 1.0, x, 1, 0, AP, 1, 0 );
// AP => <Float64Array>[ 2.0, 3.0, 6.0, 4.0, 8.0, 12.0 ]
The function has the following additional parameters:
- ox: starting index for 
x. - sap: 
APstride length. - oap: starting index for 
AP. 
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array/float64' );
var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 3.0, 2.0, 1.0 ] );
dspr.ndarray( 'row-major', 'upper', 3, 1.0, x, -1, 2, AP, 1, 0 );
// AP => <Float64Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]
Notes
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dspr = require( '@stdlib/blas/base/dspr' );
var opts = {
    'dtype': 'float64'
};
var N = 5;
var AP = discreteUniform( N * ( N + 1 ) / 2, -10.0, 10.0, opts );
var x = discreteUniform( N, -10.0, 10.0, opts );
dspr( 'column-major', 'upper', N, 1.0, x, 1, AP );
console.log( AP );
dspr.ndarray( 'column-major', 'upper', N, 1.0, x, 1, 0, AP, 1, 0 );
console.log( AP );
C APIs
Usage
TODO
TODO
TODO.
TODO
TODO
TODO
Examples
TODO