dgemm
Perform the matrix-matrix operation
C = α*op(A)*op(B) + β*Cwhereop(X)is one of theop(X) = X, orop(X) = X^T.
Usage
var dgemm = require( '@stdlib/blas/base/dgemm' );
dgemm( ord, ta, tb, M, N, K, α, A, lda, B, ldb, β, C, ldc )
Performs the matrix-matrix operation C = α*op(A)*op(B) + β*C where op(X) is either op(X) = X or op(X) = X^T, α and β are scalars, A, B, and C are matrices, with op(A) an M by K matrix, op(B) a K by N matrix, and C an M by N matrix.
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var B = new Float64Array( [ 1.0, 1.0, 0.0, 1.0 ] );
var C = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
dgemm( 'row-major', 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 2, B, 2, 1.0, C, 2 );
// C => <Float64Array>[ 2.0, 5.0, 6.0, 11.0 ]
The function has the following parameters:
- ord: storage layout.
- ta: specifies whether
Ashould be transposed, conjugate-transposed, or not transposed. - tb: specifies whether
Bshould be transposed, conjugate-transposed, or not transposed. - M: number of rows in the matrix
op(A)and in the matrixC. - N: number of columns in the matrix
op(B)and in the matrixC. - K: number of columns in the matrix
op(A)and number of rows in the matrixop(B). - α: scalar constant.
- A: first input matrix stored in linear memory as a
Float64Array. - lda: stride of the first dimension of
A(leading dimension ofA). - B: second input matrix stored in linear memory as a
Float64Array. - ldb: stride of the first dimension of
B(leading dimension ofB). - β: scalar constant
- C: third input matrix stored in linear memory as a
Float64Array. - ldc: stride of the first dimension of
C(leading dimension ofC).
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to perform matrix multiplication of two subarrays
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0 ] );
var B = new Float64Array( [ 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 ] );
var C = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
dgemm( 'row-major', 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 4, B, 4, 1.0, C, 2 );
// C => <Float64Array>[ 2.0, 5.0, 6.0, 11.0 ]
dgemm.ndarray( ta, tb, M, N, K, α, A, sa1, sa2, oa, B, sb1, sb2, ob, β, C, sc1, sc2, oc )
Performs the matrix-matrix operation C = α*op(A)*op(B) + β*C, using alternative indexing semantics and where op(X) is either op(X) = X or op(X) = X^T, α and β are scalars, A, B, and C are matrices, with op(A) an M by K matrix, op(B) a K by N matrix, and C an M by N matrix.
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var B = new Float64Array( [ 1.0, 1.0, 0.0, 1.0 ] );
var C = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
dgemm.ndarray( 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 2, 1, 0, B, 2, 1, 0, 1.0, C, 2, 1, 0 );
// C => <Float64Array>[ 2.0, 5.0, 6.0, 11.0 ]
The function has the following additional parameters:
- sa1: stride of the first dimension of
A. - sa2: stride of the second dimension of
A. - oa: starting index for
A. - sb1: stride of the first dimension of
B. - sb2: stride of the second dimension of
B. - ob: starting index for
B. - sc1: stride of the first dimension of
C. - sc2: stride of the second dimension of
C. - oc: starting index for
C.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 0.0, 0.0, 1.0, 3.0, 2.0, 4.0 ] );
var B = new Float64Array( [ 0.0, 1.0, 0.0, 1.0, 1.0 ] );
var C = new Float64Array( [ 0.0, 0.0, 0.0, 1.0, 3.0, 2.0, 4.0 ] );
dgemm.ndarray( 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 1, 2, 2, B, 1, 2, 1, 1.0, C, 1, 2, 3 );
// C => <Float64Array>[ 0.0, 0.0, 0.0, 2.0, 6.0, 5.0, 11.0 ]
Notes
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dgemm = require( '@stdlib/blas/base/dgemm' );
var opts = {
'dtype': 'float64'
};
var M = 3;
var N = 4;
var K = 2;
var A = discreteUniform( M*K, 0, 10, opts ); // 3x2
var B = discreteUniform( K*N, 0, 10, opts ); // 2x4
var C = discreteUniform( M*N, 0, 10, opts ); // 3x4
dgemm( 'row-major', 'no-transpose', 'no-transpose', M, N, K, 1.0, A, K, B, N, 1.0, C, N );
console.log( C );
dgemm.ndarray( 'no-transpose', 'no-transpose', M, N, K, 1.0, A, K, 1, 0, B, N, 1, 0, 1.0, C, N, 1, 0 );
console.log( C );
C APIs
Usage
#include "stdlib/blas/base/dgemm.h"
TODO
TODO.
TODO
TODO
TODO
Examples
TODO