ddot

Calculate the dot product of two double-precision floating-point vectors.

The dot product (or scalar product) is defined as

bold x dot bold y equals sigma-summation Underscript i equals 0 Overscript upper N minus 1 Endscripts x Subscript i Baseline y Subscript i Baseline equals x 0 y 0 plus x 1 y 1 plus ellipsis plus x Subscript upper N minus 1 Baseline y Subscript upper N minus 1

Usage

var ddot = require( '@stdlib/blas/base/ddot' );

ddot( N, x, strideX, y, strideY )

Calculates the dot product of vectors x and y.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float64Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );

var z = ddot( x.length, x, 1, y, 1 );
// returns -5.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.
  • y: input Float64Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to calculate the dot product of every other value in x and the first N elements of y in reverse order,

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );

var N = floor( x.length / 2 );

var z = ddot( N, x, 2, y, -1 );
// returns 9.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

var N = floor( x0.length / 2 );

var z = ddot( N, x1, -2, y1, 1 );
// returns 128.0

ddot.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Calculates the dot product of x and y using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float64Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );

var z = ddot.ndarray( x.length, x, 1, 0, y, 1, 0 );
// returns -5.0

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to calculate the dot product of every other value in x starting from the second value with the last 3 elements in y in reverse order

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

var N = floor( x.length / 2 );

var z = ddot.ndarray( N, x, 2, 1, y, -1, y.length-1 );
// returns 128.0

Notes

  • If N <= 0, both functions return 0.0.
  • ddot() corresponds to the BLAS level 1 function ddot.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var ddot = require( '@stdlib/blas/base/ddot' );

var x;
var y;
var i;

x = new Float64Array( 10 );
y = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( randu() * 100.0 );
    y[ i ] = round( randu() * 10.0 );
}
console.log( x );
console.log( y );

var z = ddot( x.length, x, 1, y, -1 );
console.log( z );
Did you find this page helpful?