dasum
Compute the sum of absolute values.
Usage
var dasum = require( '@stdlib/blas/base/dasum-wasm' );
dasum.main( N, x, stride )
Computes the sum of absolute values.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var sum = dasum.main( x.length, x, 1 );
// returns 15.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
.
The N
and stride parameters determine which elements in the input strided array are accessed at runtime. For example, to compute the sum of every other value,
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var sum = dasum.main( 4, x, 2 );
// returns 10.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
// Initial array:
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
// Create a typed array view:
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var sum = dasum.main( 3, x1, 2 );
// returns 12.0
dasum.ndarray( N, x, strideX, offsetX )
Computes the sum of absolute values using alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var sum = dasum.ndarray( x.length, x, 1, 0 );
// returns 19.0
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to compute the sum of last three elements,
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
var sum = dasum.ndarray( 3, x, 1, x.length-3 );
// returns 15.0
// Using a negative stride to sum from the last element:
sum = dasum.ndarray( 3, x, -1, x.length-1 );
// returns 15.0
Module
dasum.Module( memory )
Returns a new WebAssembly module wrapper instance which uses the provided WebAssembly memory instance as its underlying memory.
var Memory = require( '@stdlib/wasm/memory' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new dasum.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
dasum.Module.prototype.main( N, xp, sx )
Computes the sum of absolute values.
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var zeros = require( '@stdlib/array/zeros' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new dasum.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
// Define a vector data type:
var dtype = 'float64';
// Specify a vector length:
var N = 5;
// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;
// Write vector values to module memory:
mod.write( xptr, oneTo( N, dtype ) );
// Perform computation:
var sum = mod.main( N, xptr, 1 );
// returns 15.0
The function has the following parameters:
- N: number of indexed elements.
- xp: input
Float64Array
pointer (i.e., byte offset). - sx: index increment for
x
.
dasum.Module.prototype.ndarray( N, xp, sx, ox )
Computes the sum of absolute values using alternative indexing semantics.
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var zeros = require( '@stdlib/array/zeros' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new dasum.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
// Define a vector data type:
var dtype = 'float64';
// Specify a vector length:
var N = 5;
// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;
// Write vector values to module memory:
mod.write( xptr, oneTo( N, dtype ) );
// Perform computation:
var sum = mod.ndarray( N, xptr, 1, 0 );
// returns 15.0
The function has the following additional parameters:
- ox: starting index for
x
.
Notes
- If
N <= 0
, bothmain
andndarray
methods return0.0
. - This package implements routines using WebAssembly. When provided arrays which are not allocated on a
dasum
module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using@stdlib/blas/base/dasum
. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in@stdlib/blas/base/dasum
. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other. dasum()
corresponds to the BLAS level 1 functiondasum
.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dasum = require( '@stdlib/blas/base/dasum-wasm' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );
var sum = dasum.ndarray( x.length, x, 1, 0 );
console.log( sum );