csrot
Applies a plane rotation.
Usage
var csrot = require( '@stdlib/blas/base/csrot' );
csrot( N, cx, strideX, cy, strideY, c, s )
Applies a plane rotation.
var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns ~-0.6
var im = imagf( z );
// returns ~-1.2
z = cx.get( 0 );
// returns <Complex64>
re = realf( z );
// returns ~0.8
im = imagf( z );
// returns ~1.6
The function has the following parameters:
- N: number of indexed elements.
- cx: first input
Complex64Array
. - strideX: index increment for
cx
. - cy: second input
Complex64Array
. - strideY: index increment for
cy
.
The N
and stride parameters determine how values from cx
and cy
are accessed at runtime. For example, to apply a plane rotation to every other element,
var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot( 2, cx, 2, cy, 2, 0.8, 0.6 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns ~-0.6
var im = imagf( z );
// returns ~-1.2
z = cx.get( 0 );
// returns <Complex64>
re = realf( z );
// returns ~0.8
im = imagf( z );
// returns ~1.6
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
// Initial arrays...
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var cy1 = new Complex64Array( cy0.buffer, cy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
csrot( 2, cx1, -2, cy1, 1, 0.8, 0.6 );
var z = cy0.get( 2 );
// returns <Complex64>
var re = realf( z );
// returns ~-4.2
var im = imagf( z );
// returns ~-4.8
z = cx0.get( 3 );
// returns <Complex64>
re = realf( z );
// returns ~5.6
im = imagf( z );
// returns ~6.4
csrot.ndarray( N, cx, strideX, offsetX, cy, strideY, offsetY, c, s )
Applies a plane rotation using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot.ndarray( cx.length, cx, 1, 0, cy, 1, 0, 0.8, 0.6 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns ~-0.6
var im = imagf( z );
// returns ~-1.2
z = cx.get( 0 );
// returns <Complex64>
re = realf( z );
// returns ~0.8
im = imagf( z );
// returns ~1.6
The function has the following additional parameters:
- offsetX: starting index for
cx
. - offsetY: starting index for
cy
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,
var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot.ndarray( 2, cx, 2, 1, cy, 2, 1, 0.8, 0.6 );
var z = cy.get( 3 );
// returns <Complex64>
var re = realf( z );
// returns ~-4.2
var im = imagf( z );
// returns ~-4.8
z = cx.get( 1 );
// returns <Complex64>
re = realf( z );
// returns ~2.4
im = imagf( z );
// returns ~3.2
Notes
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var ccopy = require( '@stdlib/blas/base/ccopy' );
var zeros = require( '@stdlib/array/zeros' );
var logEach = require( '@stdlib/console/log-each' );
var csrot = require( '@stdlib/blas/base/csrot' );
function rand() {
return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
// Generate random input arrays:
var cx = filledarrayBy( 10, 'complex64', rand );
var cxc = ccopy( cx.length, cx, 1, zeros( cx.length, 'complex64' ), 1 );
var cy = filledarrayBy( 10, 'complex64', rand );
var cyc = ccopy( cy.length, cy, 1, zeros( cy.length, 'complex64' ), 1 );
// Apply a plane rotation:
csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );
// Print the results:
logEach( '(%s,%s) => (%s,%s)', cxc, cyc, cx, cy );
C APIs
Usage
#include "stdlib/blas/base/csrot.h"
c_csrot( N, *X, strideX, *Y, strideY, c, s )
Applies a plane rotation.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };
c_csrot( 2, (void *)x, 1, (void *)y, 1, 0.8f, 0.6f );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - CX:
[inout] void*
first input array. - strideX:
[in] CBLAS_INT
index increment forCX
. - CY:
[inout] void*
second input array. - strideY:
[in] CBLAS_INT
index increment forCY
. - c:
[in] float
cosine of the angle of rotation. - s:
[in] float
sine of the angle of rotation.
void c_csrot( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, void *CY, const CBLAS_INT strideY, const float c, const float s );
c_csrot_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY, c, s )
Applies a plane rotation using alternative indexing semantics.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };
c_csrot_ndarray( 2, (void *)x, 1, 0, (void *)y, 1, 0, 0.8f, 0.6f );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - CX:
[inout] void*
first input array. - strideX:
[in] CBLAS_INT
index increment forCX
. - offsetX:
[in] CBLAS_INT
starting index forCX
. - CY:
[inout] void*
second input array. - strideY:
[in] CBLAS_INT
index increment forCY
. - offsetY:
[in] CBLAS_INT
starting index forCY
. - c:
[in] float
cosine of the angle of rotation. - s:
[in] float
sine of the angle of rotation.
void c_csrot_ndarray( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *CY, const CBLAS_INT strideY, const CBLAS_INT offsetY, const float c, const float s );
Examples
#include "stdlib/blas/base/csrot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 1;
const int strideY = -1;
// Copy elements:
c_csrot( N, (void *)x, strideX, (void *)y, strideY, 0.8f, 0.6f );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "x[ %i ] = %f + %fj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
printf( "y[ %i ] = %f + %fj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
}