csrot

Applies a plane rotation.

Usage

var csrot = require( '@stdlib/blas/base/csrot' );

csrot( N, cx, strideX, cy, strideY, c, s )

Applies a plane rotation.

var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns ~-0.6

var im = imagf( z );
// returns ~-1.2

z = cx.get( 0 );
// returns <Complex64>

re = realf( z );
// returns ~0.8

im = imagf( z );
// returns ~1.6

The function has the following parameters:

  • N: number of indexed elements.
  • cx: first input Complex64Array.
  • strideX: index increment for cx.
  • cy: second input Complex64Array.
  • strideY: index increment for cy.

The N and stride parameters determine how values from cx and cy are accessed at runtime. For example, to apply a plane rotation to every other element,

var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot( 2, cx, 2, cy, 2, 0.8, 0.6 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns ~-0.6

var im = imagf( z );
// returns ~-1.2

z = cx.get( 0 );
// returns <Complex64>

re = realf( z );
// returns ~0.8

im = imagf( z );
// returns ~1.6

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );

// Initial arrays...
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var cy1 = new Complex64Array( cy0.buffer, cy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

csrot( 2, cx1, -2, cy1, 1, 0.8, 0.6 );

var z = cy0.get( 2 );
// returns <Complex64>

var re = realf( z );
// returns ~-4.2

var im = imagf( z );
// returns ~-4.8

z = cx0.get( 3 );
// returns <Complex64>

re = realf( z );
// returns ~5.6

im = imagf( z );
// returns ~6.4

csrot.ndarray( N, cx, strideX, offsetX, cy, strideY, offsetY, c, s )

Applies a plane rotation using alternative indexing semantics.

var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot.ndarray( cx.length, cx, 1, 0, cy, 1, 0, 0.8, 0.6 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns ~-0.6

var im = imagf( z );
// returns ~-1.2

z = cx.get( 0 );
// returns <Complex64>

re = realf( z );
// returns ~0.8

im = imagf( z );
// returns ~1.6

The function has the following additional parameters:

  • offsetX: starting index for cx.
  • offsetY: starting index for cy.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,

var Complex64Array = require( '@stdlib/array/complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot.ndarray( 2, cx, 2, 1, cy, 2, 1, 0.8, 0.6 );

var z = cy.get( 3 );
// returns <Complex64>

var re = realf( z );
// returns ~-4.2

var im = imagf( z );
// returns ~-4.8

z = cx.get( 1 );
// returns <Complex64>

re = realf( z );
// returns ~2.4

im = imagf( z );
// returns ~3.2

Notes

  • If N <= 0, both functions leave cx and cy unchanged.
  • csrot() corresponds to the BLAS level 1 function csrot.

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var ccopy = require( '@stdlib/blas/base/ccopy' );
var zeros = require( '@stdlib/array/zeros' );
var logEach = require( '@stdlib/console/log-each' );
var csrot = require( '@stdlib/blas/base/csrot' );

function rand() {
    return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

// Generate random input arrays:
var cx = filledarrayBy( 10, 'complex64', rand );
var cxc = ccopy( cx.length, cx, 1, zeros( cx.length, 'complex64' ), 1 );

var cy = filledarrayBy( 10, 'complex64', rand );
var cyc = ccopy( cy.length, cy, 1, zeros( cy.length, 'complex64' ), 1 );

// Apply a plane rotation:
csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );

// Print the results:
logEach( '(%s,%s) => (%s,%s)', cxc, cyc, cx, cy );

C APIs

Usage

#include "stdlib/blas/base/csrot.h"

c_csrot( N, *X, strideX, *Y, strideY, c, s )

Applies a plane rotation.

float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };

c_csrot( 2, (void *)x, 1, (void *)y, 1, 0.8f, 0.6f );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • CX: [inout] void* first input array.
  • strideX: [in] CBLAS_INT index increment for CX.
  • CY: [inout] void* second input array.
  • strideY: [in] CBLAS_INT index increment for CY.
  • c: [in] float cosine of the angle of rotation.
  • s: [in] float sine of the angle of rotation.
void c_csrot( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, void *CY, const CBLAS_INT strideY, const float c, const float s );

c_csrot_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY, c, s )

Applies a plane rotation using alternative indexing semantics.

float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };

c_csrot_ndarray( 2, (void *)x, 1, 0, (void *)y, 1, 0, 0.8f, 0.6f );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • CX: [inout] void* first input array.
  • strideX: [in] CBLAS_INT index increment for CX.
  • offsetX: [in] CBLAS_INT starting index for CX.
  • CY: [inout] void* second input array.
  • strideY: [in] CBLAS_INT index increment for CY.
  • offsetY: [in] CBLAS_INT starting index for CY.
  • c: [in] float cosine of the angle of rotation.
  • s: [in] float sine of the angle of rotation.
void c_csrot_ndarray( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *CY, const CBLAS_INT strideY, const CBLAS_INT offsetY, const float c, const float s );

Examples

#include "stdlib/blas/base/csrot.h"
#include <stdio.h>

int main( void ) {
    // Create strided arrays:
    float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
    float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };

    // Specify the number of elements:
    const int N = 4;

    // Specify stride lengths:
    const int strideX = 1;
    const int strideY = -1;

    // Copy elements:
    c_csrot( N, (void *)x, strideX, (void *)y, strideY, 0.8f, 0.6f );

    // Print the result:
    for ( int i = 0; i < N; i++ ) {
        printf( "x[ %i ] = %f + %fj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
        printf( "y[ %i ] = %f + %fj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
    }
}
Did you find this page helpful?