cmap
Apply a unary function to a single-precision floating-point strided input array and assign results to a single-precision floating-point strided output array.
Usage
var cmap = require( '@stdlib/strided/base/cmap' );
cmap( N, x, strideX, y, strideY, fcn )
Applies a unary function to a single-precision complex floating-point strided input array and assigns results to a single-precision complex floating-point strided output array.
var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var cceilf = require( '@stdlib/math/base/special/cceilf' );
var x = new Complex64Array( [ -2.3, 1.5, 3.1, -5.2, 4.8, 0.0, -1.6, 3.4 ] );
var y = new Complex64Array( x.length );
cmap( x.length, x, 1, y, 1, cceilf );
var v = y.get( 0 );
// returns <Complex64>
var re = real( v );
// returns -2.0
var im = imag( v );
// returns 2.0
The function accepts the following arguments:
- N: number of indexed elements.
- x: input
Complex64Array
. - strideX: index increment for
x
. - y: output
Complex64Array
. - strideY: index increment for
y
. - fcn: function to apply.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to index every other value in x
and to index the first N
elements of y
in reverse order,
var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var cceilf = require( '@stdlib/math/base/special/cceilf' );
var x = new Complex64Array( [ -2.3, 1.5, 3.1, -5.2, 4.8, 0.0, -1.6, 3.4 ] );
var y = new Complex64Array( x.length );
cmap( 2, x, 2, y, -1, cceilf );
var v = y.get( 0 );
// returns <Complex64>
var re = real( v );
// returns 5.0
var im = imag( v );
// returns 0.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var cceilf = require( '@stdlib/math/base/special/cceilf' );
// Initial arrays...
var x0 = new Complex64Array( [ -2.3, 1.5, 3.1, -5.2, 4.8, 0.0, -1.6, 3.4 ] );
var y0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex64Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
cmap( 2, x1, -2, y1, 1, cceilf );
var v = y0.get( 2 );
// returns <Complex64>
var re = real( v );
// returns -1.0
var im = imag( v );
// returns 4.0
cmap.ndarray( N, x, strideX, offsetX, y, strideY, offsetY, fcn )
Applies a unary function to a single-precision complex floating-point strided input array and assigns results to a single-precision complex floating-point strided output array using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var cceilf = require( '@stdlib/math/base/special/cceilf' );
var x = new Complex64Array( [ -2.3, 1.5, 3.1, -5.2, 4.8, 0.0, -1.6, 3.4 ] );
var y = new Complex64Array( x.length );
cmap.ndarray( x.length, x, 1, 0, y, 1, 0, cceilf );
var v = y.get( 0 );
// returns <Complex64>
var re = real( v );
// returns -2.0
var im = imag( v );
// returns 2.0
The function accepts the following additional arguments:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset parameters support indexing semantics based on starting indices. For example, to index every other value in x
starting from the second value and to index the last N
elements in y
in reverse order,
var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var cceilf = require( '@stdlib/math/base/special/cceilf' );
var x = new Complex64Array( [ -2.3, 1.5, 3.1, -5.2, 4.8, 0.0, -1.6, 3.4 ] );
var y = new Complex64Array( x.length );
cmap.ndarray( 2, x, 2, 1, y, -1, y.length-1, cceilf );
var v = y.get( y.length-1 );
// returns <Complex64>
var re = real( v );
// returns 4.0
var im = imag( v );
// returns -5.0
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var Complex64Array = require( '@stdlib/array/complex64' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var cmap = require( '@stdlib/strided/base/cmap' );
function scale( x ) {
var re = real( x );
var im = imag( x );
return new Complex64( re*10.0, im*10.0 );
}
var xbuf = filledarrayBy( 10*2, 'float32', discreteUniform( -100.0, 100.0 ) );
var x = new Complex64Array( xbuf.buffer );
console.log( x );
var y = new Complex64Array( x.length );
console.log( y );
cmap.ndarray( x.length, x, 1, 0, y, -1, y.length-1, scale );
console.log( y );
C APIs
Usage
#include "stdlib/strided/base/cmap.h"
stdlib_strided_cmap( N, *X, strideX, *Y, strideY, fcn )
Applies a unary function to a single-precision complex floating-point strided input array and assigns results to a single-precision complex floating-point strided output array.
#include <stdint.h>
#include <complex.h>
static float complex scale( const float complex x ) {
float re = crealf( x );
float im = cimagf( x );
return ( re+10.0f ) + ( im+10.0f )*I;
}
float complex X[] = { 1.0f+1.0f*I, 2.0f+2.0f*I, 3.0f+3.0f*I, 4.0f+4.0f*I, 5.0f+5.0f*I, 6.0f+6.0f*I };
float complex Y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
int64_t N = 6;
stdlib_strided_cmap( N, X, 1, Y, 1, scale );
The function accepts the following arguments:
- N:
[in] int64_t
number of indexed elements. - X:
[in] float complex*
input array. - strideX
[in] int64_t
index increment forX
. - Y:
[out] float complex*
output array. - strideY:
[in] int64_t
index increment forY
. - fcn:
[in] float complex (*fcn)( float complex )
unary function to apply.
void stdlib_strided_cmap( const int64_t N, const float complex *X, const int64_t strideX, float complex *Y, const int64_t strideY, float complex (*fcn)( float complex ) );
Examples
#include "stdlib/strided/base/cmap.h"
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
#include <complex.h>
// Define a callback:
static float complex scale( const float complex x ) {
float re = crealf( x );
float im = cimagf( x );
return ( re+10.0f ) + ( im+10.0f )*I;
}
int main( void ) {
// Create an input strided array:
float complex X[] = { 1.0+1.0*I, 2.0+2.0*I, 3.0+3.0*I, 4.0+4.0*I, 5.0+5.0*I, 6.0+6.0*I };
// Create an output strided array:
float complex Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
// Specify the number of elements:
int64_t N = 6;
// Define the strides:
int64_t strideX = 1;
int64_t strideY = -1;
// Apply the callback:
stdlib_strided_cmap( N, X, strideX, Y, strideY, scale );
// Print the results:
for ( int64_t i = 0; i < N; i++ ) {
printf( "Y[ %"PRId64" ] = %f + %fi\n", i, creal( Y[i] ), cimag( Y[i] ) );
}
}