Online Regression
Online regression via Stochastic Gradient Descent.
Usage
var incrSGDRegression = require( '@stdlib/ml/incr/sgd-regression' );
incrSGDRegression( [options] )
Creates an online linear regression model fitted via stochastic gradient descent. The module performs L2 regularization of the model coefficients, shrinking them towards zero by penalizing the squared euclidean norm of the coefficients.
var randu = require( '@stdlib/random/base/randu' );
var normal = require( '@stdlib/random/base/normal' );
var accumulator = incrSGDRegression();
var x1;
var x2;
var i;
var y;
// Update model as data comes in...
for ( i = 0; i < 100000; i++ ) {
x1 = randu();
x2 = randu();
y = (3.0 * x1) + (-3.0 * x2) + 2.0 + normal( 0.0, 1.0 );
accumulator( [ x1, x2 ], y );
}
The function accepts the following options
:
- learningRate:
string
denoting the learning rate to use. Can beconstant
,pegasos
orbasic
. Default:basic
. - loss:
string
denoting the loss function to use. Can besquaredError
,epsilonInsensitive
orhuber
. Default:squaredError
. - epsilon: insensitivity parameter. Default:
0.1
. - lambda: regularization parameter. Default:
1e-3
. - eta0: constant learning rate. Default:
0.02
. - intercept:
boolean
indicating whether to include an intercept. Default:true
.
var accumulator = incrSGDRegression({
'loss': 'squaredError',
'lambda': 1e-4
});
The learningRate
decides how fast or slow the weights will be updated towards the optimal weights. Let i
denote the current iteration of the algorithm (i.e. the number of data points having arrived). The possible learning rates are:
Option | Definition |
---|---|
basic (default) | 1000.0 / ( i + 1000.0 ) |
constant | eta0 |
pegasos | 1.0 / ( lambda * i ) |
The used loss function is specified via the loss
option. The available options are:
- epsilonInsensitive: Penalty is the absolute value of the error whenever the absolute error exceeds epsilon and zero otherwise.
- huber: Squared-error loss for observations with error smaller than epsilon in magnitude, linear loss otherwise. Should be used in order to decrease the influence of outliers on the model fit.
- squaredError: Squared error loss, i.e. the squared difference of the observed and fitted values.
The lambda
parameter determines the amount of shrinkage inflicted on the model coefficients:
var createRandom = require( '@stdlib/random/base/randu' ).factory;
var accumulator;
var coefs;
var opts;
var rand;
var x1;
var x2;
var i;
var y;
opts = {
'seed': 23
};
rand = createRandom( opts );
accumulator = incrSGDRegression({
'lambda': 1e-5
});
for ( i = 0; i < 100; i++ ) {
x1 = rand();
x2 = rand();
y = (3.0 * x1) + (-3.0 * x2) + 2.0;
accumulator( [ x1, x2 ], y );
}
coefs = accumulator.coefs;
// returns [ ~3.007, ~-3.002, ~2 ]
rand = createRandom( opts );
accumulator = incrSGDRegression({
'lambda': 1e-2
});
for ( i = 0; i < 100; i++ ) {
x1 = rand();
x2 = rand();
y = (3.0 * x1) + (-3.0 * x2) + 2.0;
accumulator( [ x1, x2 ], y );
}
coefs = accumulator.coefs;
// returns [ ~2.893, ~-2.409, ~1.871 ]
Higher values of lambda
reduce the variance of the model coefficient estimates at the expense of introducing bias.
By default, the model contains an intercept
term. To omit the intercept
, set the corresponding option to false
:
var accumulator = incrSGDRegression({
'intercept': false
});
accumulator( [ 1.4, 0.5 ], 2.0 );
var dim = accumulator.coefs.length;
// returns 2
accumulator = incrSGDRegression();
accumulator( [ 1.4, 0.5 ], 2.0 );
dim = accumulator.coefs.length;
// returns 3
If intercept
is true
, an element equal to one is implicitly added to each x
vector. Hence, this module performs regularization of the intercept term.
accumulator( x, y )
Update the model coefficients in light of incoming data. y
must be a numeric response value, x
a numeric array
of predictors. The number of predictors is decided upon first invocation of this method. All subsequent calls must supply x
vectors of the same dimensionality.
accumulator( [ 1.0, 0.0 ], 5.0 );
accumulator.predict( x )
Predict the response for a new feature vector x
, where x
must be a numeric array
of predictors. Given feature vector x = [x_0, x_1, ...]
and model coefficients c = [c_0, c_1, ...]
, the prediction is equal to x_0*c_0 + x_1*c_1 + ... + c_intercept
.
var yhat = accumulator.predict( [ 0.5, 2.0 ] );
// returns <number>
accumulator.coefs
Getter for the model coefficients / feature weights stored in an array
. The coefficients are ordered as [c_0, c_1,..., c_intercept]
, where c_0
corresponds to the first feature in x
and so on.
var coefs = accumulator.coefs;
// returns <Array>
Notes
- Stochastic gradient descent is sensitive to the scaling of the features. One is best advised to either scale each attribute to
[0,1]
or[-1,1]
or to transform them into z-scores with zero mean and unit variance. One should keep in mind that the same scaling has to be applied to test vectors in order to obtain accurate predictions. - Since this module performs regularization of the intercept term, scaling the response variable to an appropriate scale is also highly recommended.
Examples
var randu = require( '@stdlib/random/base/randu' );
var normal = require( '@stdlib/random/base/normal' );
var incrSGDRegression = require( '@stdlib/ml/incr/sgd-regression' );
var accumulator;
var rnorm;
var x1;
var x2;
var y;
var i;
rnorm = normal.factory( 0.0, 1.0 );
// Create model:
accumulator = incrSGDRegression({
'lambda': 1e-7,
'loss': 'squaredError',
'intercept': true
});
// Update model as data comes in...
for ( i = 0; i < 10000; i++ ) {
x1 = randu();
x2 = randu();
y = (3.0 * x1) + (-3.0 * x2) + 2.0 + rnorm();
accumulator( [ x1, x2 ], y );
}
// Extract model coefficients:
console.log( accumulator.coefs );
// Predict new observations:
console.log( 'y_hat = %d; x1 = %d; x2 = %d', accumulator.predict( [0.9, 0.1] ), 0.9, 0.1 );
console.log( 'y_hat = %d; x1 = %d; x2 = %d', accumulator.predict( [0.1, 0.9] ), 0.1, 0.9 );
console.log( 'y_hat = %d; x1 = %d; x2 = %d', accumulator.predict( [0.9, 0.9] ), 0.9, 0.9 );