ramp

Evaluate the ramp function for each element in a strided array.

The ramp function is defined as

upper R left-parenthesis x right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column x 2nd Column if x greater-than-or-equal-to 0 2nd Row 1st Column 0 2nd Column if x less-than 0 EndLayout

or, alternatively, in terms of the max function

upper R left-parenthesis x right-parenthesis equals max left-parenthesis x comma 0 right-parenthesis

Usage

var ramp = require( '@stdlib/math/strided/special/ramp' );

ramp( N, dtypeX, x, strideX, dtypeY, y, strideY )

Evaluates the ramp function for each element in a strided array x and assigns the results to elements in a strided array y.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9 ] );

// Perform operation in-place:
ramp( x.length, 'float64', x, 1, 'float64', x, 1 );
// x => <Float64Array>[ 1.1, 2.5, 0.0, 4.0, 0.0 ]

The function accepts the following arguments:

  • N: number of indexed elements.
  • dtypeX: data type for x.
  • x: input array-like object.
  • strideX: index increment for x.
  • dtypeY: data type for y.
  • y: output array-like object.
  • strideY: index increment for y.

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to index every other value in x and the first N elements of y in reverse order,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9, 6.4 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ramp( 3, 'float64', x, 2, 'float64', y, -1 );
// y => <Float64Array>[ 0.0, 0.0, 1.1, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

// Initial arrays...
var x0 = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9, 6.4 ] );
var y0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

ramp( 3, 'float64', x1, -2, 'float64', y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 6.4, 4.0, 2.5 ]

ramp.ndarray( N, dtypeX, x, strideX, offsetX, dtypeY, y, strideY, offsetY )

Evaluates the ramp function for each element in a strided array x and assigns the results to elements in a strided array y using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ramp.ndarray( x.length, 'float64', x, 1, 0, 'float64', y, 1, 0 );
// y => <Float64Array>[ 1.1, 2.5, 0.0, 4.0, 0.0 ]

The function accepts the following additional arguments:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9, 6.4 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ramp.ndarray( 3, 'float64', x, 2, 1, 'float64', y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 6.4, 4.0, 2.5 ]

Examples

var uniform = require( '@stdlib/random/base/uniform' ).factory;
var filledarray = require( '@stdlib/array/filled' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var dtypes = require( '@stdlib/array/typed-real-float-dtypes' );
var ramp = require( '@stdlib/math/strided/special/ramp' );

var dt;
var x;
var y;
var i;

dt = dtypes();
for ( i = 0; i < dt.length; i++ ) {
    x = filledarrayBy( 10, dt[ i ], uniform( -10.0, 10.0 ) );
    console.log( x );

    y = filledarray( 0.0, x.length, 'generic' );
    console.log( y );

    ramp.ndarray( x.length, dt[ i ], x, 1, 0, 'generic', y, -1, y.length-1 );
    console.log( y );
    console.log( '' );
}
Did you find this page helpful?