evalrational
Compile a module for evaluating a rational function.
Usage
var compile = require( '@stdlib/math/base/tools/evalrational-compile' );
compile( P, Q[, options] )
Compiles a module string containing an exported function which evaluates a rational function having coefficients P
and Q
.
var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];
var str = compile( P, Q );
// returns <string>
The function supports the following options
:
- dtype: input argument floating-point data type (e.g.,
float64
orfloat32
). Default:'float64'
.
In the example above, the output string would correspond to the following module:
'use strict';
// MAIN //
/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* - Coefficients should be sorted in ascending degree.
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @private
* @param {number} x - value at which to evaluate the rational function
* @returns {number} evaluated rational function
*/
function evalrational( x ) {
var ax;
var s1;
var s2;
if ( x === 0.0 ) {
return -3.0;
}
if ( x < 0.0 ) {
ax = -x;
} else {
ax = x;
}
if ( ax <= 1.0 ) {
s1 = 3.0 + (x * (2.0 + (x * 1.0)));
s2 = -1.0 + (x * (-2.0 + (x * -3.0)));
} else {
x = 1.0 / x;
s1 = 1.0 + (x * (2.0 + (x * 3.0)));
s2 = -3.0 + (x * (-2.0 + (x * -1.0)));
}
return s1 / s2;
}
// EXPORTS //
module.exports = evalrational;
The coefficients should be ordered in ascending degree, thus matching summation notation.
By default, the function assumes double-precision floating-point arithmetic. To emulate single-precision floating-point arithmetic, set the dtype
option to 'float32'
.
var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];
var str = compile( P, Q, {
'dtype': 'float32'
});
// returns <string>
In the previous example, the output string would correspond to the following module:
'use strict';
// MODULES //
var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
// MAIN //
/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* - Coefficients should be sorted in ascending degree.
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @private
* @param {number} x - value at which to evaluate the rational function
* @returns {number} evaluated rational function
*/
function evalrational( x ) {
var ax;
var s1;
var s2;
if ( x === 0.0 ) {
return -3.0;
}
if ( x < 0.0 ) {
ax = -x;
} else {
ax = x;
}
if ( ax <= 1.0 ) {
s1 = float64ToFloat32(3.0 + float64ToFloat32(x * float64ToFloat32(2.0 + float64ToFloat32(x * 1.0)))); // eslint-disable-line max-len
s2 = float64ToFloat32(-1.0 + float64ToFloat32(x * float64ToFloat32(-2.0 + float64ToFloat32(x * -3.0)))); // eslint-disable-line max-len
} else {
x = float64ToFloat32( 1.0 / x );
s1 = float64ToFloat32(1.0 + float64ToFloat32(x * float64ToFloat32(2.0 + float64ToFloat32(x * 3.0)))); // eslint-disable-line max-len
s2 = float64ToFloat32(-3.0 + float64ToFloat32(x * float64ToFloat32(-2.0 + float64ToFloat32(x * -1.0)))); // eslint-disable-line max-len
}
return float64ToFloat32( s1 / s2 );
}
// EXPORTS //
module.exports = evalrational;
Notes
- The function is intended for non-browser environments for the purpose of generating module files.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var compile = require( '@stdlib/math/base/tools/evalrational-compile' );
// Create arrays of random coefficients:
var P = discreteUniform( 10, -100, 100 );
var Q = discreteUniform( 10, -100, 100 );
// Compile a module for evaluating a rational function:
var str = compile( P, Q );
console.log( str );