Kernel Tangent
Compute the tangent of a number on
[-π/4, π/4]
.
Usage
var kernelTan = require( '@stdlib/math/base/special/kernel-tan' );
kernelTan( x, y, k )
Computes the tangent of a number
on [-π/4, π/4]
. For increased accuracy, the number for which the tangent should be evaluated can be supplied as a double-double number (i.e., a non-evaluated sum of two double-precision floating-point numbers x
and y
).
var out = kernelTan( 3.141592653589793/4.0, 0.0, 1 );
// returns ~1.0
out = kernelTan( 3.141592653589793/6.0, 0.0, 1 );
// returns ~0.577
out = kernelTan( 0.664, 5.288e-17, 1 );
// returns ~0.783
If k = 1
, the function returns tan(x+y)
. To return the negative inverse -1/tan(x+y)
, set k = -1
.
var out = kernelTan( 3.141592653589793/4.0, 0.0, -1 );
// returns ~-1.0
If either x
or y
is NaN
, the function returns NaN
.
var out = kernelTan( NaN, 0.0, 1 );
// returns NaN
out = kernelTan( 3.0, NaN, 1 );
// returns NaN
out = kernelTan( NaN, NaN, 1 );
// returns NaN
Notes
As components of a double-double number, the two double-precision floating-point numbers
x
andy
must satisfywhere
ulp
stands for units in the last place.
Examples
var linspace = require( '@stdlib/array/base/linspace' );
var binomial = require( '@stdlib/random/base/binomial' ).factory;
var PI = require( '@stdlib/constants/float64/pi' );
var kernelTan = require( '@stdlib/math/base/special/kernel-tan' );
var x = linspace( -PI/4.0, PI/4.0, 100 );
var rbinom = binomial( 1, 0.5 );
var descr;
var i;
var k;
for ( i = 0; i < x.length; i++ ) {
k = rbinom();
descr = ( k === 1 ) ? 'tan(%d) = %d' : '-1/tan(%d) = %d';
console.log( descr, x[ i ], kernelTan( x[ i ], 0.0, k ) );
}