gcdf
Compute the greatest common divisor (gcd) of two single-precision floating-point numbers.
The greatest common divisor (gcd) of two non-zero integers a
and b
is the largest positive integer which divides both a
and b
without a remainder. The gcd is also known as the greatest common factor (gcf), highest common factor (hcf), highest common divisor, and greatest common measure (gcm).
Usage
var gcdf = require( '@stdlib/math/base/special/gcdf' );
gcdf( a, b )
Computes the greatest common divisor (gcd) of two single-precision floating-point numbers.
var v = gcdf( 48, 18 );
// returns 6
If both a
and b
are 0
, the function returns 0
.
var v = gcdf( 0, 0 );
// returns 0
Both a
and b
must have integer values; otherwise, the function returns NaN
.
var v = gcdf( 3.14, 18 );
// returns NaN
v = gcdf( 48, 3.14 );
// returns NaN
v = gcdf( NaN, 18 );
// returns NaN
v = gcdf( 48, NaN );
// returns NaN
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var gcdf = require( '@stdlib/math/base/special/gcdf' );
var a = discreteUniform( 100, 0, 50 );
var b = discreteUniform( a.length, 0, 50 );
var i;
for ( i = 0; i < a.length; i++ ) {
console.log( 'gcdf(%d,%d) = %d', a[ i ], b[ i ], gcdf( a[ i ], b[ i ] ) );
}
C APIs
Usage
#include "stdlib/math/base/special/gcdf.h"
stdlib_base_gcdf( a, b )
Computes the greatest common divisor (gcd) of two single-precision floating-point numbers.
float v = stdlib_base_gcdf( 48.0f, 18.0f );
// returns 6.0f
The function accepts the following arguments:
- a:
[in] float
input value. - b:
[in] float
input value.
float stdlib_base_gcdf( const float a, const float b );
Examples
#include "stdlib/math/base/special/gcdf.h"
#include <stdio.h>
int main( void ) {
const float a[] = { 24.0f, 32.0f, 48.0f, 116.0f, 33.0f };
const float b[] = { 12.0f, 6.0f, 15.0f, 52.0f, 22.0f };
float out;
int i;
for ( i = 0; i < 5; i++ ) {
out = stdlib_base_gcdf( a[ i ], b[ i ] );
printf( "gcdf(%f, %f) = %f\n", a[ i ], b[ i ], out );
}
}
References
- Stein, Josef. 1967. "Computational problems associated with Racah algebra." Journal of Computational Physics 1 (3): 397–405. doi:10.1016/0021-9991(67)90047-2.