cfloorn
Round each component of a double-precision complex floating-point number to the nearest multiple of
10^n
toward negative infinity.
Usage
var cfloorn = require( '@stdlib/math/base/special/cfloorn' );
cfloorn( z, n )
Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n
toward negative infinity.
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
// Round components to 2 decimal places:
var v = cfloorn( new Complex128( -3.141592653589793, 3.141592653589793 ), -2 );
// returns <Complex128>
var re = real( v );
// returns -3.15
var im = imag( v );
// returns 3.14
// If n = 0, `cfloorn` behaves like `cfloor`:
v = cfloorn( new Complex128( -3.141592653589793, 3.141592653589793 ), 0 );
// returns <Complex128>
re = real( v );
// returns -4.0
im = imag( v );
// returns 3.0
// Round components to the nearest thousand:
v = cfloorn( new Complex128( -12368.0, 12368.0 ), 3 );
// returns <Complex128>
re = real( v );
// returns -13000.0
im = imag( v );
// returns 12000.0
v = cfloorn( new Complex128( NaN, NaN ), 0 );
// returns <Complex128>
re = real( v );
// returns NaN
im = imag( v );
// returns NaN
Notes
When operating on floating-point numbers in bases other than
2
, rounding to specified digits can be inexact. For example,var Complex128 = require( '@stdlib/complex/float64/ctor' ); var real = require( '@stdlib/complex/float64/real' ); var imag = require( '@stdlib/complex/float64/imag' ); var x = -0.2 - 0.1; // returns -0.30000000000000004 // Should round components to 0.3: var v = cfloorn( new Complex128( x, x ), -16 ); // returns <Complex128> var re = real( v ); // returns -0.3000000000000001 var im = imag( v ); // returns -0.3000000000000001
Examples
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var floor = require( '@stdlib/math/base/special/floor' );
var cfloorn = require( '@stdlib/math/base/special/cfloorn' );
var randint = require( '@stdlib/random/base/discrete-uniform' );
var z;
var w;
var n;
var i;
for ( i = 0; i < 100; i++ ) {
z = new Complex128( uniform( -50.0, 50.0 ), uniform( -50.0, 50.0 ) );
n = randint( -5.0, 0.0 );
w = cfloorn( z, n );
console.log( 'floorn(%s,%s) = %s', z.toString(), n.toString(), w.toString() );
}
C APIs
Usage
#include "stdlib/math/base/special/cfloorn.h"
stdlib_base_cfloorn( z, n )
Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n
toward negative infinity.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z = stdlib_complex128( -3.141592653589793, 3.141592653589793 );
stdlib_complex128_t out = stdlib_base_cfloorn( z, -2 );
double re = stdlib_complex128_real( out );
// returns -3.15
double im = stdlib_complex128_imag( out );
// returns 3.14
The function accepts the following arguments:
- z:
[in] stdlib_complex128_t
input value. - n:
[in] int32_t
integer power of 10.
stdlib_complex128_t stdlib_base_cfloorn( const stdlib_complex128_t z, const int32_t n );
Examples
#include "stdlib/math/base/special/cfloorn.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main() {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, -1.5 ),
stdlib_complex128( 0.0, 0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re1;
double im1;
double re2;
double im2;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
y = stdlib_base_cfloorn( v, -2 );
stdlib_complex128_reim( v, &re1, &im1 );
stdlib_complex128_reim( y, &re2, &im2 );
printf( "cfloorn(%lf + %lfi, -2) = %lf + %lfi\n", re1, im1, re2, im2 );
}
}