cfloorn

Round each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward negative infinity.

Usage

var cfloorn = require( '@stdlib/math/base/special/cfloorn' );

cfloorn( z, n )

Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward negative infinity.

var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );

// Round components to 2 decimal places:
var v = cfloorn( new Complex128( -3.141592653589793, 3.141592653589793 ), -2 );
// returns <Complex128>

var re = real( v );
// returns -3.15

var im = imag( v );
// returns 3.14

// If n = 0, `cfloorn` behaves like `cfloor`:
v = cfloorn( new Complex128( -3.141592653589793, 3.141592653589793 ), 0 );
// returns <Complex128>

re = real( v );
// returns -4.0

im = imag( v );
// returns 3.0

// Round components to the nearest thousand:
v = cfloorn( new Complex128( -12368.0, 12368.0 ), 3 );
// returns <Complex128>

re = real( v );
// returns -13000.0

im = imag( v );
// returns 12000.0

v = cfloorn( new Complex128( NaN, NaN ), 0 );
// returns <Complex128>

re = real( v );
// returns NaN

im = imag( v );
// returns NaN

Notes

  • When operating on floating-point numbers in bases other than 2, rounding to specified digits can be inexact. For example,

    var Complex128 = require( '@stdlib/complex/float64/ctor' );
    var real = require( '@stdlib/complex/float64/real' );
    var imag = require( '@stdlib/complex/float64/imag' );
    
    var x = -0.2 - 0.1;
    // returns -0.30000000000000004
    
    // Should round components to 0.3:
    var v = cfloorn( new Complex128( x, x ), -16 );
    // returns <Complex128>
    
    var re = real( v );
    // returns -0.3000000000000001
    
    var im = imag( v );
    // returns -0.3000000000000001
    

Examples

var Complex128 = require( '@stdlib/complex/float64/ctor' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var floor = require( '@stdlib/math/base/special/floor' );
var cfloorn = require( '@stdlib/math/base/special/cfloorn' );
var randint = require( '@stdlib/random/base/discrete-uniform' );

var z;
var w;
var n;
var i;

for ( i = 0; i < 100; i++ ) {
    z = new Complex128( uniform( -50.0, 50.0 ), uniform( -50.0, 50.0 ) );

    n = randint( -5.0, 0.0 );
    w = cfloorn( z, n );

    console.log( 'floorn(%s,%s) = %s', z.toString(), n.toString(), w.toString() );
}

C APIs

Usage

#include "stdlib/math/base/special/cfloorn.h"

stdlib_base_cfloorn( z, n )

Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward negative infinity.

#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"

stdlib_complex128_t z = stdlib_complex128( -3.141592653589793, 3.141592653589793 );
stdlib_complex128_t out = stdlib_base_cfloorn( z, -2 );

double re = stdlib_complex128_real( out );
// returns -3.15

double im = stdlib_complex128_imag( out );
// returns 3.14

The function accepts the following arguments:

  • z: [in] stdlib_complex128_t input value.
  • n: [in] int32_t integer power of 10.
stdlib_complex128_t stdlib_base_cfloorn( const stdlib_complex128_t z, const int32_t n );

Examples

#include "stdlib/math/base/special/cfloorn.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>

int main() {
    const stdlib_complex128_t x[] = {
        stdlib_complex128( 3.14, 1.5 ),
        stdlib_complex128( -3.14, -1.5 ),
        stdlib_complex128( 0.0, 0.0 ),
        stdlib_complex128( 0.0/0.0, 0.0/0.0 )
    };

    stdlib_complex128_t v;
    stdlib_complex128_t y;
    double re1;
    double im1;
    double re2;
    double im2;
    int i;
    for ( i = 0; i < 4; i++ ) {
        v = x[ i ];
        y = stdlib_base_cfloorn( v, -2 );
        stdlib_complex128_reim( v, &re1, &im1 );
        stdlib_complex128_reim( y, &re2, &im2 );
        printf( "cfloorn(%lf + %lfi, -2) = %lf + %lfi\n", re1, im1, re2, im2 );
    }
}
Did you find this page helpful?