beta
The beta function, also called the Euler integral, is defined as
The beta function is related to the Gamma function via the following equation
Usage
var beta = require( '@stdlib/math/base/special/beta' );
beta( x, y )
Evaluates the beta function.
var val = beta( 0.0, 0.5 );
// returns Infinity
val = beta( 1.0, 1.0 );
// returns 1.0
val = beta( -1.0, 2.0 );
// returns NaN
val = beta( 5.0, 0.2 );
// returns ~3.382
val = beta( 4.0, 1.0 );
// returns 0.25
Examples
var beta = require( '@stdlib/math/base/special/beta' );
var x;
var y;
for ( x = 0; x < 10; x++ ) {
for ( y = 10; y > 0; y-- ) {
console.log( 'x: %d, \t y: %d, \t f(x,y): %d', x, y, beta( x, y ) );
}
}
C APIs
Usage
#include "stdlib/math/base/special/beta.h"
stdlib_base_beta( a, b )
Evaluates the beta function.
double out = stdlib_base_beta( 1.0, 1,0 );
// returns 1.0
out = stdlib_base_beta( 5.0, 0.2);
// returns ~3.382
The function accepts the following arguments:
- a:
[in] double
input value. - b:
[in] double
input value.
double stdlib_base_beta ( const double a, const double b );
Examples
#include "stdlib/math/base/special/beta.h"
#include <stdio.h>
int main( void ) {
const double x[] = { 1.0, 3.0, 5.0, 8.0, 10.0 };
const double y[] = { 2.0, 4.0, 7.0, 9.0, 10.0 };
double out;
int i;
int j;
for ( i = 0; i < 5; i++ ) {
for ( j = 0; j < 5; j++ ){
out = stdlib_base_beta( x[ i ], y[ j ] );
printf ( "x: %lf, y: %lf, out: %lf\n", x[ i ], y[ j ], out );
}
}
}