j0

Compute the Bessel function of the first kind of order zero.

The Bessel function of the first kind of order zero is defined as

upper J 0 left-parenthesis x right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative pi Superscript pi Baseline e Superscript minus i x sine left-parenthesis tau right-parenthesis Baseline d tau period

Usage

var j0 = require( '@stdlib/math/base/special/besselj0' );

j0( x )

Computes the Bessel function of the first kind of order zero at x.

var v = j0( 0.0 );
// returns 1.0

v = j0( 1.0 );
// returns ~0.765

v = j0( Infinity );
// returns 0.0

v = j0( -Infinity );
// returns 0.0

v = j0( NaN );
// returns NaN

Examples

var randu = require( '@stdlib/random/base/randu' );
var j0 = require( '@stdlib/math/base/special/besselj0' );

var x;
var i;

for ( i = 0; i < 100; i++ ) {
    x = randu() * 10.0;
    console.log( 'j0(%d) = %d', x, j0( x ) );
}

C APIs

Usage

#include "stdlib/math/base/special/besselj0.h"

stdlib_base_besselj0( x )

Computes the Bessel function of the first kind of order zero at x.

double out = stdlib_base_besselj0( 0.0 );
// returns 1.0

out = stdlib_base_besselj0( 1.0 );
// returns ~0.765

The function accepts the following arguments:

  • x: [in] double input value.
double stdlib_base_besselj0( const double x );

Examples

#include "stdlib/math/base/special/besselj0.h"
#include <stdio.h>

int main( void ) {
    const double x[] = { 0.0, 1.0, 2.0, 3.0, 4.0 };

    double y;
    int i;
    for ( i = 0; i < 5; i++ ) {
        y = stdlib_base_besselj0( x[ i ] );
        printf( "besselj0(%lf) = %lf\n", x[ i ], y );
    }
}
Did you find this page helpful?