dlaswp
Perform a series of row interchanges on an input matrix.
Usage
var dlaswp = require( '@stdlib/lapack/base/dlaswp' );
dlaswp( N, A, LDA, k1, k2, IPIV, incx )
Performs a series of row interchanges on an input matrix A using pivot indices stored in IPIV.
var Int32Array = require( '@stdlib/array/int32' );
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 0, 1 ] );
dlaswp( 'row-major', 2, A, 2, 0, 2, IPIV, 1 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
The function has the following parameters:
- order: storage layout.
- N: number of columns in
A. - A: input matrix stored in linear memory as a
Float64Array. - LDA: stride of the first dimension of
A(a.k.a., leading dimension of the matrixA). - k1: index of first row to interchange when
incxis positive and the index of the last row to interchange whenincxis negative. - k2: index of last row to interchange when
incxis positive and the index of the first row to interchange whenincxis negative. - IPIV: vector of pivot indices as an
Int32Array. Must contain at leastk1+(k2-k1)*abs(incx)elements. Only the elements in positionsk1throughk1+(k2-k1)*abs(incx)are accessed. - incx: increment between successive values of
IPIV. Elements fromIPIVare accessed according toIPIV[k1+(k-k1)*abs(incx)] = j, thus implying that rowskandjshould be interchanged. Ifincxis negative, the pivots are applied in reverse order.
The sign of the increment parameter incx determines the order in which pivots are applied. For example, to apply pivots in reverse order,
var Int32Array = require( '@stdlib/array/int32' );
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 0, 1 ] );
dlaswp( 'row-major', 2, A, 2, 0, 2, IPIV, -1 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
To perform strided access over IPIV, provide an abs(incx) value greater than one. For example, to access every other element in IPIV,
var Int32Array = require( '@stdlib/array/int32' );
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 999, 0, 999, 1 ] );
dlaswp( 'row-major', 2, A, 2, 0, 2, IPIV, 2 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Int32Array = require( '@stdlib/array/int32' );
var Float64Array = require( '@stdlib/array/float64' );
// Initial arrays...
var A0 = new Float64Array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var IPIV0 = new Int32Array( [ 0, 2, 0, 1] );
// Create offset views...
var A1 = new Float64Array( A0.buffer, A0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var IPIV1 = new Int32Array( IPIV0.buffer, IPIV0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dlaswp( 'row-major', 2, A1, 2, 0, 2, IPIV1, 1 );
// A0 => <Float64Array>[ 0.0, 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
dlaswp.ndarray( N, A, sa1, sa2, oa, k1, k2, inck, IPIV, si, oi )
Performs a series of row interchanges on the matrix A using pivot indices stored in IPIV and alternative indexing semantics.
var Int32Array = require( '@stdlib/array/int32' );
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 0, 1 ] );
dlaswp.ndarray( 2, A, 2, 1, 0, 0, 2, 1, IPIV, 1, 0 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
The function has the following additional parameters:
- N: number of columns in
A. - A: input matrix stored in linear memory as a
Float64Array. - sa1: stride of the first dimension of
A. - sa2: stride of the second dimension of
A. - oa: starting index for
A. - k1: index of first row to interchange when
inckis positive and the index of the last row to interchange wheninckis negative. - k2: index of last row to interchange when
inckis positive and the index of the first row to interchange wheninckis negative. - inck: direction in which to apply pivots (-1 to apply pivots in reverse order; otherwise, apply in provided order).
- IPIV: vector of pivot indices as an
Int32Array. - si: index increment for
IPIV. - oi: starting index for
IPIV.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Int32Array = require( '@stdlib/array/int32' );
var Float64Array = require( '@stdlib/array/float64' );
var A = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var IPIV = new Int32Array( [ 0, 0, 2, 0, 1 ] );
dlaswp.ndarray( 2, A, 2, 1, 4, 0, 2, 1, IPIV, 1, 2 );
// A => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
Notes
- Both functions access
k2-k1+1elements fromIPIV. - While
dlaswpconflates the order in which pivots are applied with the order in which elements inIPIVare accessed, thendarraymethod delineates control of those behaviors with separate parametersinckandsi. dlaswp()corresponds to the LAPACK level 1 functiondlaswp.
Examples
var Float64Array = require( '@stdlib/array/float64' );
var Int32Array = require( '@stdlib/array/int32' );
var ndarray2array = require( '@stdlib/ndarray/base/to-array' );
var dlaswp = require( '@stdlib/lapack/base/dlaswp' );
// Specify matrix meta data:
var shape = [ 4, 2 ];
var strides = [ 1, 4 ];
var offset = 0;
var order = 'column-major';
// Create a matrix stored in linear memory:
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
console.log( ndarray2array( A, shape, strides, offset, order ) );
// Define a vector of pivot indices:
var IPIV = new Int32Array( [ 2, 0, 3, 1 ] );
// Interchange rows:
dlaswp( order, shape[ 1 ], A, strides[ 1 ], 0, shape[ 0 ]-1, IPIV, 1 );
console.log( ndarray2array( A, shape, strides, offset, order ) );
C APIs
Usage
TODO
TODO
TODO.
TODO
TODO
TODO
Examples
TODO