Uniform

Uniform distribution constructor.

Usage

var Uniform = require( '@stdlib/math/base/dists/uniform/ctor' );

Uniform( [a, b] )

Returns an uniform distribution object.

var uniform = new Uniform();

var mu = uniform.mean;
// returns 0.5

By default, a = 0.0 and b = 1.0. To create a distribution having a different a (minimum support) and b (maximum support), provide parameter values.

var uniform = new Uniform( 2.0, 4.0 );

var mu = uniform.mean;
// returns 3.0

uniform

An uniform distribution object has the following properties and methods...

Writable Properties

uniform.a

Minimum support of the distribution. a must be a number smaller than b.

var uniform = new Uniform();

var a = uniform.a;
// returns 0.0

uniform.a = 0.5;

a = uniform.a;
// returns 0.5

uniform.b

Maximum support of the distribution. b must be a number larger than a.

var uniform = new Uniform( 2.0, 4.0 );

var b = uniform.b;
// returns 4.0

uniform.b = 3.0;

b = uniform.b;
// returns 3.0

Computed Properties

Uniform.prototype.entropy

Returns the differential entropy.

var uniform = new Uniform( 4.0, 12.0 );

var entropy = uniform.entropy;
// returns ~2.079

Uniform.prototype.kurtosis

Returns the excess kurtosis.

var uniform = new Uniform( 4.0, 12.0 );

var kurtosis = uniform.kurtosis;
// returns -1.2

Uniform.prototype.mean

Returns the expected value.

var uniform = new Uniform( 4.0, 12.0 );

var mu = uniform.mean;
// returns 8.0

Uniform.prototype.median

Returns the median.

var uniform = new Uniform( 4.0, 12.0 );

var median = uniform.median;
// returns 8.0

Uniform.prototype.skewness

Returns the skewness.

var uniform = new Uniform( 4.0, 12.0 );

var skewness = uniform.skewness;
// returns 0.0

Uniform.prototype.stdev

Returns the standard deviation.

var uniform = new Uniform( 4.0, 12.0 );

var s = uniform.stdev;
// returns ~2.309

Uniform.prototype.variance

Returns the variance.

var uniform = new Uniform( 4.0, 12.0 );

var s2 = uniform.variance;
// returns ~5.333

Methods

Uniform.prototype.cdf( x )

Evaluates the cumulative distribution function (CDF).

var uniform = new Uniform( 2.0, 4.0 );

var y = uniform.cdf( 2.5 );
// returns 0.25

Uniform.prototype.logcdf( x )

Evaluates the natural logarithm of the cumulative distribution function (CDF).

var uniform = new Uniform( 2.0, 4.0 );

var y = uniform.logcdf( 2.5 );
// returns ~-1.386

Uniform.prototype.logpdf( x )

Evaluates the natural logarithm of the probability density function (PDF).

var uniform = new Uniform( 2.0, 4.0 );

var y = uniform.logpdf( 2.5 );
// returns ~-0.693

Uniform.prototype.pdf( x )

Evaluates the probability density function (PDF).

var uniform = new Uniform( 2.0, 4.0 );

var y = uniform.pdf( 2.5 );
// returns 0.5

Uniform.prototype.quantile( p )

Evaluates the quantile function at probability p.

var uniform = new Uniform( 2.0, 4.0 );

var y = uniform.quantile( 0.5 );
// returns 3.0

y = quantile( 1.9 );
// returns NaN

Examples

var Uniform = require( '@stdlib/math/base/dists/uniform/ctor' );

var uniform = new Uniform( 2.0, 4.0 );

var mu = uniform.mean;
// returns 3.0

var median = uniform.median;
// returns 3.0

var s2 = uniform.variance;
// returns ~0.333

var y = uniform.cdf( 2.5 );
// returns 0.25